Graded Otx2 activities demonstrate dose-sensitive eye and retina phenotypes.

نویسندگان

  • Clémence Bernard
  • Hyoung-Tai Kim
  • Raoul Torero Ibad
  • Eun Jung Lee
  • Manuel Simonutti
  • Serge Picaud
  • Dario Acampora
  • Antonio Simeone
  • Ariel A Di Nardo
  • Alain Prochiantz
  • Kenneth L Moya
  • Jin Woo Kim
چکیده

In the human, mutations of OTX2 (Orthodenticle homeobox 2 transcription factor) translate into eye malformations of variable expressivity (even between the two eyes of the same individual) and incomplete penetrance, suggesting the existence of subtle thresholds in OTX2 activity. We have addressed this issue by analyzing retinal structure and function in six mutant mice with graded Otx2 activity: Otx2(+/+), Otx2(+/AA), Otx2(+/GFP), Otx2(AA/AA), Otx2(AA/GFP) and Otx2(GFP/GFP). Null mice (Otx2(GFP/GFP)) fail to develop the head and are embryonic lethal, and compound heterozygous Otx2(AA/GFP) mice show a truncated head and die at birth. All other genotypes develop until adulthood. We analyzed eye structure and visual physiology in the genotypes that develop until adulthood and report that phenotype severity parallels Otx2 activity. Otx2(+/AA) are only mildly affected whereas Otx2(+/GFP) are more affected than Otx2(+/AA) but less than Otx2(AA/AA) mice. Otx2(AA/AA) mice later manifest the most severe defects, with variable expressivity. Electrophysiological and histological analyses of the mouse retina revealed progressive death of bipolar cells and cone photoreceptors that is both Otx2 activity- and age-dependent with the same ranking of phenotypic severity. This study demonstrates the importance of gene dosage in the development of age-dependent pathologies and underscores the fact that small gene dosage differences can cause significant pathological states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implication of OTX2 in pigment epithelium determination and neural retina differentiation.

The expression pattern of Otx2, a homeobox-containing gene, was analyzed from the beginning of eye morphogenesis until neural retina differentiation in chick embryos. Early on, Otx2 expression was diffuse throughout the optic vesicles but became restricted to their dorsal part when the vesicles contacted the surface ectoderm. As the optic cup forms, Otx2 was expressed only in the outer layer, w...

متن کامل

Donating Otx2 to support neighboring neuron survival

Mutations of orthodentricle homeobox 2 (OTX2) in human and mice often cause retinal dystrophy and nyctalopia, suggesting a role of OTX2 in mature retina, in addition to its functions in the development of the eye and retina. In support of this, the number of bipolar cells in Otx2+/- post-natal mouse retina was found to be significantly lower than normal. Degeneration of the cells becomes greate...

متن کامل

Heterozygous mutations of OTX2 cause severe ocular malformations.

Major malformations of the human eye, including microphthalmia and anophthalmia, are examples of phenotypes that recur in families yet often show no clear Mendelian inheritance pattern. Defining loci by mapping is therefore rarely feasible. Using a candidate-gene approach, we have identified heterozygous coding-region changes in the homeobox gene OTX2 in eight families with ocular malformations...

متن کامل

The homeobox gene Otx2 in development and disease.

The Otx2 gene encodes a transcription factor essential for the normal development of brain, cerebellum, pineal gland, and eye. In the retina, Otx2 has essential functions from early embryogenesis to adulthood. As soon as the optic vesicle is formed, the gene is required for retinal pigment epithelium specification. Otx2 is also a key regulator of photoreceptor genesis and differentiation, and i...

متن کامل

Otx2 ChIP-seq Reveals Unique and Redundant Functions in the Mature Mouse Retina

During mouse retinal development and into adulthood, the transcription factor Otx2 is expressed in pigment epithelium, photoreceptors and bipolar cells. In the mature retina, Otx2 ablation causes photoreceptor degeneration through a non-cell-autonomous mechanism involving Otx2 function in the supporting RPE. Surprisingly, photoreceptor survival does not require Otx2 expression in the neural ret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 23 7  شماره 

صفحات  -

تاریخ انتشار 2014